### Algebra Lab

# Factoring Trinomials continued

#### **Activity 3** Factor $x^2 - bx + c$

Use algebra tiles to factor  $x^2 - 5x + 6$ .

**Step 1** Model  $x^2 - 5x + 6$ .



**Step 3** Complete the rectangle with the *x*-tiles. The rectangle has a width of x - 2 and a length of x - 3.

Therefore,  $x^2 - 5x + 6 = (x - 2)(x - 3)$ .





## **Activity 4** Factor $x^2 - bx - c$

Use algebra tiles to factor  $x^2 - 4x - 5$ .

Step 1 Model  $x^2 - 4x - 5$ .

**Step 2** Place the  $x^2$ -tile at the corner of the product mat. Arrange the 1-tiles into a 1-by-5 rectangular array as shown.

**Step 3** Place the *x*-tile as shown. Recall that you can add zero pairs without changing the value of the polynomial. In this case, add a zero pair of x-tiles.

> The rectangle has a width of x + 1 and a length of x - 5.

Therefore,  $x^2 - 4x - 5 = (x + 1)(x - 5)$ .





#### **Model and Analyze**

Use algebra tiles to factor each trinomial.

1. 
$$x^2 + 3x + 2$$

**2.** 
$$x^2 + 6x + 8$$

3. 
$$x^2 + 3x - 4$$

**4.** 
$$x^2 - 7x + 12$$

**5.** 
$$x^2 + 7x + 10$$

**6.** 
$$x^2 - 2x + 1$$

7. 
$$x^2 + x - 12$$

8. 
$$x^2 - 8x + 15$$

Tell whether each trinomial can be factored. Justify your answer with a drawing.

**9.** 
$$x^2 + 3x + 6$$

**10.** 
$$x^2 - 5x - 6$$

11. 
$$x^2 - x - 4$$

12. 
$$x^2 - 4$$

13. WRITING IN MATH How can you use algebra tiles to determine whether